
The YGrep Search Engine
The YGrep Search Engine (YGREP.DLL or YGREP32.DLL) is the name of a Dynamic Link Library built
for MS-Windows by Yves Roumazeilles and which is able to provide two search functionalities:

Approximative Search

Regular Expression Search

Soundex Search

It can be found bundled with some applications like the shareware utility ClusterView or some other
commercial ones. But, more to the point, you can use it to enhance your own applications.

New features

Alphabetical list of functions

Function groups

Structures

Registration information

Future developments

FTP and Compuserve availability

Common questions and features

Things not to forget and advice for first time users

The YGrep Search Engine was brought to life to by an effort to materialize the knowledge I acquired in
text processing some years ago.

First, as I am sure you already infered, AGREP is the traditional name for Approximative Search. The
notion has been brought to light - at least mine - by Ricardo Baeza-Yates and Gaston H.Gonnet under the
name of Shift-Or (or Shift-Add) search method. To my knowledge, the name of agrep was originally
adopted by Sun Wu and Udi Manber for a Unix utility implementing a similar algorithm.

Then, Regular Expression Search is based on old work by many researchers on automaton logic. Many
implementations have already been found on Unix systems (under the application names of ed(1) and
grep(1)) and others Operating Systems including VAX-VMS, DOS, CP/M, etc. They often differ from the
original one on Unix, but most power users now recognize easily the common syntax and appreciate its
powerful capabilities.

I added some extensions which were not in the original Unix version. In that I was following the interface
specification of various authors including David Conroy (original author of the superb MicroEmacs editor
which I advise you to use in its more recent version by Daniel Lawrence for your MS Windows editing
tasks), Ozan S. Yigit and Karl Hoorsfish. To that I had to add my own salt and pepper to get a working
interface. The original version of this Regular Expression Search was inserted in the YR-Emacs public
domain text editor I wrote on the basis of the mentioned MicroEmacs editor.

Finally (up to now), Soundex Search is based upon a simple principle presented by Knuth, D.E. in his
1973 book "The art of computer programming - Volume 3: Sorting and searching" (Addison-Wesley
Publishing Company, Reading, Mass. Page 392). I also kept an eye upon a public domain implementation
of the basic transformation by N. Dean Pentcheff (University of California at Berkeley).

I apologize for omitting many of the other sources of my little knowledge in the field of programming and
text programming.

New features
Version 6.00 adds the new soundex set of functions.

Version 5.01 adds a minor but important improvement to the YGrep Search Engine: Delphi 2.0 interface!

Version 5.00 is the latest major improvement to the YGrep Search Engine in years. It includes a new set
of functions for handling directly files (rather than only lines), a way to remove all dialog boxes (in order to
help in internationalizing client applications), Boolean associations of search commands to build complex
meta-searches. Also, some of the minor improvements may have a slightly good impact on overall
performance (but it may be difficult to time it, though).

A completely new "test" application has been built for the file-handling operations. Since it can be of
general use, I included it in the shareware package. Its source code comes in the Licensed package. It's
a great and simple example for this set of functions.

The Full Developer Kit is now 100% built under Visual C++ v4.1 (and will leave under this status as long
as possible since IMNSHO this is a rather nice development environment). In this move, it has been
cleaned and documented some more. A few errors have been corrected.

Version 4.07 and v4.07a solve a pair of bugs discovered by Robert Schottland (thanks Robert!). The first
one is a complete failure of character classes (those structures involving brackets like [a-z] to declare all
lower-cased letters). The use of these was utterly random.

It also removed a bug in substitution functions when used with the sub-expression substitution patterns
(when using the \0 to \9 tags in the substitution to insert parts of the original pattern). The functions had
the very bad habit of inserting the tag (not only the pattern) into the substituted string.

Version 4.06 solves the problem of not getting a hit for regular expression ".*" when matching against an
empty string.

Version 4.05 solves a no-match-case search problem in regular expressions.

Version 4.04 is the first version allowing full text substitution with the new functions:

AGrepSubstitute

RGrepSubstitute

SAGrepSubstitute

SRGrepSubstitute

Users will certainly prefer them to the old AGrepSubsBuild and RGrepSubsBuild which are still available
for upward compatiblity.

Version 4.03 is adding improved documentation and some important new download instructions. Support
on Compuserve has been added from our new address there (101233,1032).

Both are dwarfed by the apparition of the first 32-bit programming model version of the YGrep Search
Engine. If you downloaded only the 16-bit version, you should look into the Windows 95 part of your BBS,
FTP site or library.

Version 4.02 is adding the important new layer of functions with only scalar parameters. This allows to
use more easily the YGrep Search Engine with Visual Basic and other programming languages which
have difficulties calling too complex functions or functions with very complex parameters.

Version 4.01 is more or less a maintenance release with bug removal, performance improvements,
documentation improvements, size reduction, help file improvements.

In version 4.00, the name was changed from AGrep Search Engine to YGrep Search Engine, in order to
avoid confusion with existing Unix/Linux utility named agrep.

I also removed some bugs, optimized out a few bytes, removed some compilation warnings, and did a lot
of field testing with the beta testers.

In version 3.02, the following functions were added:

AGrepSubsBuild

RGrepSubsBuild

InitWordCharTable

AddWordChar

RemoveWordChar

You may also have noticed that the documentation has been improved a lot. Many typos were removed,
and many little errors were corrected (including - shame on me! - the removal of a subject page having
nothing to do with the whole subject). A database of common questions and features has been added to
this help file to improve the efficiency of your bug busting and your understanding of the operation of the
whole YGrep Search Engine.

You may not have noticed, but the performance was improved, some bugs were found by the users (yes!
it's you) and removed. Thanks for your help!

A new version of the YGrep Search Engine for MS-DOS is now available.

Future developments
If you register conveniently, and keep on following the evolution of the YGrep Search Engine, you will see
the following expected future developments real soon now:

 New improved memory management strategies for the registered versions

 Possible new ways to look for data

 What you're asking for... I try to include it as long as it does not break the existing code and if it can be
helpful to some

FTP and Compuserve availability

The YGrep Search Engine is available through anonymous FTP (Internet file download). The reference
storage is on the famous SimTel and CICA servers. Anyhow, to find the

ftp.winsite.com directory: pub/pc/win95/programr file: yg600w95.zip

ftp.coast.net directory: SimTel/win95/dll file: yg600w95.zip

Anyhow, if you want to get up-to-date availability information, you should have a look at
http://ourworld.compuserve.com/homepages/Yves_Roumazeilles/ which gives up-to-date information
on how to upload the packages. Furthermore, it gives a few mirror sites in order for you to reduce
download times by using less common sites.

However, SimTel and CICA are rather famous locations and people tend to overwhelm the capacity of the
machines there. Here are some of my preferred mirror sites:

src.doc.ic.ac.uk (155.198.1.40)

nic.switch.ch (130.59.1.40)

ftp.unicamp.br 143.106.10.54)

plaza.aarnet.edu.au (139.130.23.2)

romulus.ucs.uoknor.edu (129.15.10.20)

micros.hensa.ac.uk (194.80.32.51)

ftp.jussieu.fr (134.157.0.130)

Of course, you can also make an Archie search if you have access to it. And you will easily find the most
appropriate file server near to you. That is the way I look myself for the various versions of the YGrep
Search Engine disseminated around the world.

You can also join me by email for help or updated information...

The YGrep Search Engine is also available from Compuserve. You should look into the library of the
"Windows Shareware Forum" (GO WINSHARE). The YGrep Search Engine can be found (and
downloaded) from the "[22] Programming/Dev. tools" section. If you cannot find it here, first try using the
PC File Finder utility from WinCIM, then, reach me by Compuserve mail (at my 101233,1032 personal
address).

YGrep Search Engine's approximative search
The approximative search is allowing you to find a text without knowing the exact form of what you are
looking for. For example, you can look for text without taking into account the case of the letters (without
making a difference between uppercase and lowercase letters).

The operation is centered on the fact that in most cases you know a text string which is "approximately"
what you are looking for in your files. Additionaly, you are able to say that you expect this text string to
have a certain number of errors.

For example, the string 'East Germany' is approximately identical to 'West Germany', but there are 2
errors (the first two letters of the words) and 10 matches.

YGrep Search Engine's regular expression search
The regular expression search is allowing you to find a text based on a description which will help you be
more precise than with Approximative Search, but also more difficult to handle before you get used to it.

To give you a first look at what can be done (without going too far into the regular expressions syntax),
here are a few of the possibilities.

You can search for pattern in the beginning (or in the end) of the lines, ignoring the similar patterns which
appears in the middle. You can search for telephone numbers (XXX-X-XXX-XXXX), dates (XX/XX/XX),
times (XX:XX), three-figure-numbers (XXX), or any other strictly formed field of numbers. but you can also
look for patterns a little more evasive like: four letter-words containing no figures, but beginning with an S
letter either in lower- or uppercase and in the end of a line (that is defined by the pattern '\<[Ss][^0-
9_][^0-9_][^0-9_]\>$').

For an extended specification of the regular expression used, see also Regular Expressions

YGrep Search Engine's Soundex search
The soundex search is based upon the idea that a in English, and more specifically when writing names
of people, most of us do introduce typos and errors which are easily recognized if you speak the word up
(say "hello!" and say "helow!") or that come from usual errors made when typing people names (the
orthography of people's names has long been considered highly flexible). It is then useful to be able to
compare two names using their internal simplest sound structure.

That way "Euler" and "Eller" are probably the same people, "Wockeck" and "Woikcek" are probably two
different ways of writing the name of the same people. Soundex will make no difference between the
names of these pairs.

YGrep Search Engine regular expressions
The YGrep Search Engine regular expression routines support the full range of Unix regular expressions
as defined in ed(1) and in grep(1).

Specification
 ^ A circumflex as the first character of the pattern forces matches to beginning of lines.

$ A dollar as the last character of the pattern forces matches to end of lines.

. A period anywhere in the string matches any single character.

* An expression followed by a asterisk matches zero or more occurrences of that expression.

+ An expression followed by a plus sign matches one or more occurrences of that expression.

- An expression followed by a minus sign optionally matches that expression.

[] A string enclosed in square brackets matches any character in that string, but no others. If the
first character of the string is a circumflex the expression matches any character except the characters in
the string. A range of characters may be specified by two characters separated by a -.

\< A backslash followed by an opening < matches the beginning of a word.

\> A backslash followed by a closing > matches the end of a word.

\(A backslash followed by an opening (describes the beginning of a tagged sub-expression (see
Substitution Expressions, it has no effect on search-only expressions).

\) A backslash followed by a closing) describes the end of a tagged sub-expression (see
Substitution Expressions, it has no effect on search-only expressions).

\ A backslash folowed by any other character quotes that character. This allows a search for a
character that is usually a regular expression specifier.

Examples
^Windows matches all lines starting with Windows

Grep$ matches all lines ending with Grep

H..p matches all lines containing Help, Hoop, Harp, etc.

^W.n matches all lines starting with Win, Won, etc.

\$ matches a dollar sign

fo* matches f, fo, foo, etc.

fo+ matches fo, foo, etc.

[xyz] matches x, y and z

a[^xyz]c matches abc, arc and aXb but not axb

([0-9]) matches (0), (1), (2), (3), (4), (5), (6), (7), (8) and (9)

([0-9]*) matches (), (0), (123), (2512), etc.

\<[Aa].*\> matches any non-empty word beginning with either a or A

YGrep Search Engine substitution expressions
The YGrep Search Engine regular expression substitution routines support a small set of expressions to
define how the substitution will be performed.

Specification
& An ampersand in the substituted string forces insertion of the full matched pattern.

\number A backslash followed by a number forces the insertion of the tag matched with the
equivalent number in the pattern.

\& An escape sequence to allow the insertion of the & character (while removing its matched
pattern meaning).

Examples
Patterns Substitution

Windows MS-& replaces all occurences of Windows with MS-Windows

\(dows\)\([Ww]in\) \2\1 allows to reorder the pattern dowsWin into the normal Windows
regardless of the letter-casing of the W in the beginning of the word

Note that \0 is equivalent to & and they both match the whole found string.

YGrep Search Engine Limitations
The YGrep Search Engine is limited in both the length of the pattern it can manage and in the maximum
number of errors it accepts.

The length of the pattern is limited to 512 letters maximum.

The number of errors is limited to 256 maximum.

Both of them are limited by the following formula:

length_of_pattern <= 512 / (log2(number_of_errors) + 1)

The simple meaning of this formula is that if you have a long pattern, you cannot have a large number of
errors. For example, with a 256 character pattern you must limit yourself to 1 error only. In most cases,
this is not too limiting, but it should be noticed.

To partly overcome that constraint it is also possible to use the non-cased text search functionality.

Should you need to have a limitation placed higher or lower, please, contact the author for a customized
version (this is not much more expensive than a standard package) or a source code license.

Single User Registration Fee

Yes! We remind you the single user license fee is still only a mere 95FF or US$20.

Full Developer Kit Registration Fee

This highly efficient license has a fee of only 1410FF or US$295.

Registering The YGrep Search Engine

The YGrep Search Engine is distributed as shareware. It is not free or public domain. This means you
may copy and distribute it freely but should you find it useful and use it beyond an initial evaluation period
of 30 days you are both legally and morally obliged to pay the registration fee or license fee.

Yes, I want to register now!

Yves Roumazeilles - the author France - money transfers / no credit cards

Public (Software) Library US and worldwide - credit card orders

Public (Software) Library Worldwide - on the Internet

Compuserve SWREG registration Worldwide - CIS customers

What you get when registering
This is the important question. Here is the list:

- updated and optimized full YGrep Search Engine with the license to use it on a single computer. This will
include a complete registered MS-Windows DLL, and libraries for MS-DOS (small, compact, medium, and
large memory models).

- user documentation on plain paper (more than 60 pages of code, reference data, advice and answers to
questions)

- an immediate notice when a new release is ready on the market.

- rebate coupons for upgrading to new releases.

- source code of the this help file to allow you to easily build the help file for YOUR application. This will
reduce your work when preparing your application to ship and you may find interesting ideas on how to
build a nice help file for MS-Windows.

- source code for useful resources you can use in your application (dialogs, etc.) in relation with the
YGrep Search Engine.

- sample files for different languages when available.

- a registration number to identify yourself when contacting us.

- support through fax, phone and Email.

- access to our database of bug reports between releases. No release is done while this database
contains even a single bug. We do not ship products we know contain bugs. But after shipping, users may
discover ugly things in our code, and we trace them while we hunt them.

Commercial software and shareware developers
You can get a complete Developer Kit for a flat rate including unlimited royalty-free right to distribute the
registered Dynamic Link Library in your product. This allows you to include it in your nice universal text
editor or encryption package.

Customized versions can also be obtained from the author (me, of course) upon request and after
acceptance of a specific quotation (most customizations can be obtained for about twice the Developper
Kit registration license fee).

Remember that you can also ask for source licenses which will include full C source code, with full
resources, definition files (everything you need to rebuild the YGrep Search Engine from scratch). I
cannot give more. Well! May be not give, because you pay for it. But, it's a bargain you could discuss with
me if you need this.

Acknowledgments
I would like to thank the following people whose help has been invaluable during the development of the
YGrep Search Engine:

Christian Lescuyer provided the original idea and a large amount of time for product testing (even in alpha
state).

Anne Elisabeth Halpern proved that the concept was usable by exploiting it during years in the process of
preparing her litterature thesis about Michaud (Belgian French-writing poet and painter). She provided
permanent confidence even when her own work was overwhelming.

Martin Heller for his excellent book "Advanced Windows Programming" published by John Wiley & Sons.
This is the most useful book about Windows programming I ever found. If you intend to do MS Windows
programming, you NEED it.

The whole WIN3-L@UICVM.BITNET Internet mailing list who provided help when I was stopped in the
development process. Not all the subscribers (more than 2000 currently) provided help, but a dozen of
them are very proficient and helpful. I can remember and thank Walter Knopf, Yossi Oren, Yoav
Chernobroda and Vance Gloster, and many others...

Registration form

Yves Roumazeilles - author

Select "File-Print Topic" from the menu bar to print this form. You will then be able to fill it. You can
accompany you order with check. Credit cards are NOT accepted. You can order by phone or fax.

Please use the form when ordering by mail.

NAME: __

COMPANY: ______________________________________

ADDRESS: ______________________________________

TOWN: __

CITY: ___

POSTCODE: ________ COUNTRY/STATE: ____________

TELEPHONE: _______________________

FAX: _______________________

EMAIL: _______________________

YGrep Search Engine
Single user license ($20 or 95 French Francs) ________
Developer kit license ($295 or 1410 French Francs) ________

BitList Engine
Single user license ($20 or 95 French Francs) ________
Developer kit license ($295 or 1410 French Francs) ________

ClusterView Application
Single user license ($20 or 95 French Francs) ________

Shipping/Handling to Europe ($4 or 20 French Francs) ________

Shipping/Handling outside of Europe ($6 or 30 French Francs) ________

==========

Sub-Total.... ________

European residents, apply VAT/TVA 18.6% (on sub-total) ________

==========

Total........... ________

Here, shipping/handling costs are applied once even for multiple orders.

Make cheques payable to: Yves Roumazeilles

If you wish to pay in other currencies than French Francs or dollars, apply the normal change rate to
French Francs and add a 6% increase to cover the costs my bank charges me. Thank you.

If you wish to pay in other currencies or if you want to use a fast cash payment, we can organize a
Western Union | Money Transfer (the fastest way to send money worldwide.TM). Contact me and I can
provide the appropriate information to reach one of the 28000+ agent locations in the world (in more than

100 countries) and organize a money transfer which will "do it" in a few minutes.

If you want to pay with a credit card (MC, Visa, Amex or Discovery) please contact Public (Software)
Library through mail, phone or fax.

Mail to:

Yves Roumazeilles
63 rue des Moines
75017 PARIS
 (FRANCE)

This address is also the place where you can get information of various kinds (about the status of the
shipment of the order, registration options, product details, technical support, volume discounts, dealer
pricing, etc.)

Phone: +33-1-42.28.74.51
Fax: +33-1-30.38.37.07
Email: YGrep@usa.net (or 101233.1032@compuserve.com or Roumazeilles@sagem.fr)
Compuserve ID: 101233,1032

PLEASE, if you do not like the long distance calls involved with my address in France, do prefer sending
a Fax (it won't hang your phone too long), sending an Internet Email (it won't cost too much, and
Compuserve, BIX, AOL all have Internet gateways for your mail - I know you are paying for that, I won't
overuse it, but any Email with the product name in its subject field gets a very high priority).

Registration form

Public (Software) Library - registration service

Select "File-Print Topic" from the menu bar to print this form. You will then be able to fill it.

You can order with MC, Visa, Amex, or Discovery from the Public (Software) Library by calling. You can
accompany you order with check. Credit cards are NOT accepted. You can order by phone or fax. But
THESE NUMBERS ARE FOR PLACING AN ORDER ONLY!

Please use the form when ordering by mail (furthermore, filling it in before you call will help in getting the
order reliably placed).

NAME: __

COMPANY: ______________________________________

ADDRESS: ______________________________________

TOWN: __

CITY: __

POSTCODE: ________ COUNTRY/STATE: ____________

TELEPHONE: _______________________

FAX: _______________________

EMAIL: _______________________ (please provide it in order to be informed)

YGrep Search Engine (item/product #11244)
Single user license ($20) ________
Developer kit license ($295) ________

BitList Engine (item/product #11245)
Single user license ($20) ________
Developer kit license ($295) ________

ClusterView Application (item/product #11246)
Single user license ($20) ________

Shipping/Handling to Europe ($4) per license ________

Shipping/Handling outside of Europe ($6) per license ________

==========

Sub-Total.... ________

==========

Total........... ________

Be very clear about which version of the software you wish to purchase (single license or Developer Kit
license), since the same item number is used for both, but the packages and prices are quite different.

Contact one of the following:

by phone: 800-2424-PsL or Intl+1+713-524-6394

or by FAX: Intl+1+713-524-6398
or by CIS/Compuserve Email to 71355,470
or on the Internet/web at http://206.109.101.6
or send mail to:
PsL
P.O. Box 35705
Houston, TX 77235-5705
 (United States of America)

Remember! THE ABOVE NUMBERS ARE FOR ORDERS ONLY. You cannot expect any kind of support
through them. If you call there, not only will you be left without an appropriate answer, but I will have to
pay for the useless call.

Any questions about the status of the shipment of the order, registration options, product details, technical
support, volume discounts, dealer pricing, site licenses etc., must be directed to:

Yves Roumazeilles
63 rue des Moines
75017 PARIS
 (FRANCE)
Phone: +33-1-42.28.74.51
Fax: +33-1-30.38.37.07
Email: YGrep@usa.net (or 101233.1032@compuserve.com or Roumazeilles@sagem.fr)
Compuserve ID: 101233,1032

To insure that you get the latest version, PsL will notify us the day of your order and we will ship the
product directly to you.

Registration instructions

Compuserve SWREG - registration service

This is the on-line registration service for Compuserve customers. It allows on-line, immediate, direct
registration.

You should GO SWREG, to join the Shareware Registration Forum. You will then be asked the reference
of the software product you want to get. Take it from the following list:

YGrep Search Engine v4.0 (item/product #)
Single user license ($20) Id# 7811
Developer kit license ($295) Id# 10443

ClusterView v2.0 Windows 3.1 Application (item/product #)
Single user license ($20) Id# 7812

ClusterView v2.0 Win32/WinNT/Win95 Application (item/product #)
Single user license ($20) Id# 7814

Shipping/Handling to Europe ($4) per license

Shipping/Handling outside of Europe ($6) per license

Any questions about the status of the shipment of the order, registration options, product details, technical
support, volume discounts, dealer pricing, site licenses etc., must be directed to:

Yves Roumazeilles
63 rue des Moines
75017 PARIS
 (FRANCE)
Phone: +33-1-42.28.74.51
Fax: +33-1-30.73.24.40
Internet Email: YGrep@usa.net (or 101233.1032@compuserve.com or Roumazeilles@sagem.fr)
Compuserve ID: 101233,1032

To insure that you get the latest version, Compuserve will notify us the day of your order and we will ship
the product directly to you.

Application Copyright and User License

The YGrep Search Engine Dynamic Link Library (DLL) and its documentation files and manuals are
copyrighted (C) 1992-93-94-95-96 by Yves Roumazeilles. Their use is subject to the acceptance of the
User License terms.

All the names used here are trademarks and registered trademarks of their respective owners.

Registration Fee

If you are using the YGrep Search Engine after the initial 30 day evaluation period, you must pay the
license to continue using the package. This payment is named registration fee.

For use by corporations and other institutions, please contact the author for a licensing arrangement.
Customizing and other special licensing are available upon request.

If you want to get the full source code of the library or of one of its components, please contact the author
for a licensing arrangement.

Shareware User License

The program files and the associated documentation (e.g. this documentation) are copyrighted by the
author. The copyright owner hereby licenses you to use the software given these restrictions:

* The program shall be supplied in its original, unmodified form, which includes this documentation.

* For-profit use without a license is prohibited.

* The program may not be included - or bundled - with other goods or services. The licensed version is
ready there for this purpose.

* No fee is charged. An exception is granted for not-for-profit user's group, which are permitted to
charge a small fee (under $5) for materials, handling, postage and general costs. No other
organization is permitted to charge any amount for distribution of copies of the software or
documentation, or to include copies of the software or documentation with sales of their own
products.

There is no warranty of any kind (either implied or not). The copyright owner may not be held liable for
any damages, including any lost profits or other incidental or consequential damages arising out of or
inability to use the software. By using the software, you agree to this.

Common Questions and Features

If you have some problem while using the YGrep Search Engine it's the right place to look for a solution.
The most common problems encountered by users (both end users and developpers) are stored in this
unstructured database (in my mind unstructured means "with strictly no order").

 Note 001 I cannot load the DLL, while I could some time ago.

 Note 002 How do I initialize the expiration date?

 Note 003 I am not sure what a [z-a] pattern would match.

 Note 004 My application seems to slow down while using the YGrep Search Engine and then stops
because of lack of memory.

 Note 004 After some number of searches, I cannot get anything other than "not enough memory"
messages.

 Note 005 YGrepEmpty takes too much time in executing.

 Note 006 The YGrep Search Engine is great, but I would like to have it under MS-DOS.

 Note 007 In some cases, I get a General Protection Fault from either AGrep or RGrep.

 Note 008 CompileAGrep does not accept my large patterns or patterns with a large number of
allowed errors.

 Note 008 What are the limitations of the YGrep Search Engine?

 Note 009 I only want to match patterns with no regular expressions, no approximation.

 Note 010 How do I know the version level of a specific YGREP.DLL?

 Note 011 In some cases, AGrep (or RGrep) will never return when called.

 Note 012 I am not able to find explanations about how to use the AGrepInit function.

 Note 013 I cannot compile with the Small or Compact memory model.

 Note 013 I keep on getting stack overflows from the application I built.

 Note 014 I do not find all the matches in the line. There are 12 of them and the returned value is
less than that.

 Note 015 I work with FoxPro (or another programming language) which cannot call the YGrep
Search Engine functions

 Note 016 I work with Delphi 2.0 which is said to be compatible with the YGrep Search Engine. How
do I use it?

 Note 017 I do not understand soundex

 Note 018 The things that should be done when evaluating the YGrep Search Engine

I cannot load the DLL, while I could some time ago.
The YGrep Search Engine shareware edition package is distributed for an evaluation period of 30 days.
The software automagically detects the end of the period and stops accepting load requests. The
expiration date of the shareware license has been reached... You should register now. I will send you
immediately an up-to-date and unlimited package.

If you are using a registered package, you have certainly changed something in your
computer/application configuration to stop the DLL loading process. It is a process which des not need
many things and little memory, for sure.

How do I initiliaze the expiration date?
You do not have to. The software automagically determines it and stores it appropriately.

I am not sure what a [z-a] pattern would match.
While [a-z] matches any lower case letter, the [z-a] matches nothing at all. You have to be cautious with
the order of the letter you put between the brackets when you define a set.

But if you give all the intermediate letters, the order is meaningless. [abcdefghij] is equivalent to
[bcadefihgj] and to [a-j].

My application seems to slow down while using the YGrep Search Engine and
then stops because of lack of memory.
After some number of searches, I cannot get anything other than "not enough
memory" messages.
If you're an end-user.

The application calling the YGrep Search Engine has a bug in it. Call your product support and you can
shorten the response time by stating that it could be related to "a memory leak in YGrep Search Engine,
for not using AGrepEmpty". Then wait for a correction of the bug.

If you're a developer.

Did you remember to call the appropriate AGrepEmpty function after you no longer need the
AGREPINFO structure? It is necessary to free memory used by data structures pointed to by elements of
AGREPINFO, before freeing the structure itself.

This is a two step process, first release indirect memory by calling AGrepEmpty:
AGrepEmpty(aGI);

Then, free the structure by calling the traditional memory de-allocator free:
free(aGI);

AGrepEmpty takes too much time in executing.
Some low-memory configuration may have difficulties in freeing memory with AGrepEmpty. This leads to
long waiting time while running through this routine (up to 2 seconds in slow PC with low-memory
condition).

You can either try to reduce the overall memory use of the application by unlocking as much global
memory as possible before calling the AGrep family routines, or we can provide a customized YGrep
Search Engine which would only use local memory instead. The difference may not appear great in most
cases, but could specifically help your project.

You can also try to preserve an AGREPINFO structure after compiling a pattern to avoid repetitively
calling CompileAgrep/AgrepEmpty.

The YGrep Search Engine is great, but I would like to have it under MS-DOS.
That's not a problem. If you cannot find it on your usual BBS or Internet site, ask me. I have already
available MS-DOS and Windows versions of the YGrep Search Engine.

Furthermore, when you register, you get both versions simultaneously. That's a bargain!

In some cases, I get a General Protection Fault from either AGrep or RGrep.
It is always possible that you found a bug in the YGrep Search Engine. However, the most current cause
of this kind of behavior appears to be a program compiling an expression and then providing the
optimized data structure to the wrong function (e.g. calling AGrep with an RGREPINFO structure, or
RGrep with an AGREPINFO structure). Both types of structures are positively incompatible with each
other and should not be used with the wrong library function.

Another very common situation appears when a user forget that the Windows version MUST be compiled
in the Large memory model. All others (Tiny, Small, Medium, or Compact) are not currently supported. In
the future, the Medium memory model could become also available. But, there appears to be no hurry.

The MS-DOS version has not this limitation. You can use any of the models.

CompileAGrep does not accept my large patterns or patterns with a large number
of allowed errors.
What are the limitations of the YGrep Search Engine?
That's normal. there are some limitations you will have to live with. If necessary, you can contact the
author (me) in order to get a specifically customized version.

I only want to match patterns with no regular expressions, no approximation.
That's quite normal! Look at the AGrep with a parameter of 0 errors (k=0). This will be detected and will
call strstr with the only difference that you still are able to use the 'Match case' capability. However, if you
look for sheer efficiency, you should be thinking of calling directly strstr from your compiler library. It has
the advantage of avoiding you the optimization test at the entry of AGrep before calling strstr. This is a
very small speed improvement, but sometimes...

How do I know the version of a specific YGREP.DLL?
There are two ways. The simplest is to look at the date of the file YGREP.DLL. However, you could
encounter files whose date have been modified by the BBS where you got the YGrep Search Engine (this
does not occur when obtaining the original files from the author - when registering). In that case, you
should use the YGrepVersion function to get the actual version number.

Additionally, if you got the appropriate tool, you can find the version number in the header of the
YGREP.DLL file (in the library name field). But this may lead to some imprecision as the minor version
number is not included in this message.

In some cases, AGrep (or RGrep) will never return when called.
First, you may want to look at Note 007 and particularly to notice that you should compile your Windows
application for the Large memory only.

In some cases, I observed that users where expecting a result from the calls in too short a time. It's rather
uncommon, but AGrep (more than RGrep) can take some time in handling some very long patterns on the
slowest machines.

Well! You may have found a bug, of course. Look for your registration number and reach me, please.

If you did not register, here comes the registration form and my address. Registration information

I am not able to find explanations about how to use the AGrepInit function
That is normal. Even if this function is declared in the YGREP.H header file, it should not be used. It is
reserved for debugging purposes (debugging of the library, not of your application).

Do not look for it.

I cannot compile with the Small or Compact memory model
I keep on getting stack overflows from the application I build
The problem is simply that these memory models only allow a single data segment of 64 kbytes. The
problem is that the AGREPINFO is a very large data structure. Allocating from the stack or from the static
data is a very large stress for such a small space. However, if you allocate it dynamically (with malloc() or
calloc() as in the sample code provided) you may - at least - be able to know that allocation failed.

In some cases, this problem appears as a "stack overflow" at init time for your application (when the
application allocates space for the initial stack).

I do not find all the matches in the line. There are 12 of them and the returned
value is less than that
If you check their description pages, RGrep and AGrep are limited to a certain number of matches. It
depends on how many matches can be "documented" in the TagStart/TagEnd fields.

RGrep can only indicate one match (or none). AGrep can only indicate up to MAXTAG matches (or none).
If the searched line contains more matches than that, they will come undetected and you will have to
advance the search pointer in the line.

The sweeping search example in the reference manual is doing just that.

I work with FoxPro (or another programming language) which cannot call the
YGrep Search Engine functions
Look at the scalar-parameter-only functions [they have the same name as the original functions -
SAGrep() for AGrep()]. The main difference is that the scalar-parameter-only functions do use an
internal XGREPINFO data structures and, therefore, do not need more than null-terminated strings and
integers.

I work with Delphi 2.0 which is said to be compatible with the YGrep Search
Engine. How do I use it?
Nothing is more simple. Simply place 'YGrepInit' in the USES clause of your program and call the
functions as they are defined in the YGREPINIT.PAS file.

See YGREPTEST.PAS for some sample code.

The things that should be done when evaluating the YGrep Search Engine
Here are a few things that evalutors of the package should be well inspired of doing first.

- Put the DLL in the C:\WINDOWS or the C:\WINDOWS\SYSTEM directory

- First try with RGrep rather than AGrep (AGrep seems to be a little more difficult to handle for
most people, and switching later from the RGrep family of functions to the AGrep family is a very simple
switch where you're used to RGrep).

- Do not forget to call AGrepInit/AGrepEmpty (the single most common thing people forget about
the AGrep family of functions...)

- Do not forget to call allocate memory for the data structures

The things that should be done when evaluating the YGrep Search Engine
Note 19

The things that should be done when evaluating the YGrep Search Engine
Note 20

The things that should be done when evaluating the YGrep Search Engine
Note 21

Alphabetical list of functions
AddWordChar

AGrep

AGrepEmpty

AGrepInit

AGrepSubsBuild (please prefer the following function)

AGrepSubstitute

CompileAGrep

CompileRGrep

CompileSGrep

InitWordCharTable

PushYInfo

RemoveWordChar

RGrep

RGrepSubsBuild (please prefer the following function)

RGrepSubstitute

SAGrep

SAGrepEmpty

SAGrepSubsBuild (please prefer the following function)

SAGrepSubstitute

SCompileAGrep

SCompileRGrep

SCompileSGrep

SFileAGrep

SFileClose

SFileOpen

SFileRGrep

SFileSetFlags

SFileSGrep

SGrep

SRGrep

SRGrepSubsBuild (please prefer the following function)

SRGrepSubstitute

SSGrep

SSGrepSubsBuild (please prefer the following function)

SSGrepSubstitute

YGrep

YGrepGetError

YGrepMessages

YGrepOptions

YGrepResetError

YGrepSetError

YGrepVersion

Function groups
Initialization function

Approximative Search functions

Regular Expression Search functions

Soundex Search functions

Functions with only scalar parameters

Functions for handling files

other functions

Initialization functions
Functions used to initialize the YGrep Search Engine:

The initialization of the Dynamic Link Library (DLL) is done by the internal LibMain function and needs no
specific documentation.

Functions used to initialize some ot the behaviour of the AGrep group of functions:

AGrepInit

Functions used to un-initialize (to finalize) some ot the behaviour of the AGrep group of functions:

AGrepEmpty

Functions used to initialize some ot the behaviour of the RGrep group of functions:

AddWordChar

InitWordCharTable

RemoveWordChar

Other functions:

YGrepMessages

File-based functions
SFileAGrep

SFileClose

SFileOpen

SFileRGrep

SFileSGrep

SFileSetFlags

Approximative Search functions
AGrep

AGrepEmpty

AGrepInit

AGrepSubsBuild (please prefer the following function)

AGrepSubstitute

CompileAGrep

SFileAGrep

Regular Expression Search functions
CompileRGrep

RGrep

RGrepSubsBuild (please prefer the following function)

RGrepSubstitute

SFileRGrep

Soundex Search functions
AGrep

AGrepEmpty

AGrepInit

AGrepSubsBuild (please prefer the following function)

AGrepSubstitute

CompileAGrep

SFileAGrep

Substitution functions
AGrepSubsBuild (please prefer the following function)

AGrepSubstitute

RGrepSubsBuild (please prefer the following function)

RGrepSubstitute

SGrepSubsBuild (please prefer the following function)

SGrepSubstitute

Scalar functions or functions with only scalar parameters
Some of the functions of the YGrep Search Engine are using a pointer on a complex structure to move
around some important internal data between the different functions (AGREPINFO, RGREPINFO or
SGREPINFO).

While being very flexible and memory efficient, these functions are difficult to call in some cases with
development tools like FoxPro or Visual Basic. In order to reduce the burden on these tools, there is a set
of equivalent functions which use an implicit (and therefore not user visible) parameter. These functions
have exactly the same operation as there equivalent with extended parameters, a similar name (the
scalar functions have a name with a prepended S - SRGrep is the scalar equivalent of RGrep).

Here is the list of these equivalent functions:

SAGrep

SAGrepEmpty

SAGrepInit

SAGrepSubsBuild (please prefer the following function)

SAGrepSubstitute

SCompileAGrep

SCompileRGrep

SRGrep

SRGrepSubsBuild (please prefer the following function)

SRGrepSubstitute

SCompileSGrep

SSGrep

SSGrepSubsBuild (please prefer the following function)

SSGrepSubstitute

SFileAGrep

SFileClose

SFileOpen

SFileRGrep

SFileSGrep

SFileSetFlags

Other functions
PushYInfo

YGrep

YGrepGetError

YGrepMessages

YGrepOptions

YGrepResetError

YGrepSetError

YGrepVersion

Functions with only scalar parameters

Functions for handling files

Structures
AGREPINFO structure

RGREPINFO structure

SGREPINFO structure

YGREPINFO structure

LPAGREPINFO type

LPRGREPINFO type

LPSGREPINFO type

LPYGREPINFO type

If you don't like twiddling with these types of parameters, you should have a look at the functions with only
scalar parameters. They should simplify part of your work at the only expense of generality.

AGREPINFO
typedef struct tagAGrepInfo { /* agi */

int iErrorCode;
char cPat[WORD_SIZE];
LPSTR TagStart[MAXTAG];
LPSTR TagEnd[MAXTAG];
int bMatchCase;
int bMessages;
BLIST uMask;
BLIST uOvMask;
BLIST uLimit;
BLIST uTable[MAXSYM];
int iBitsPerState;
int iWordSize;
int iType;
char cUPat[WORD_SIZE];

} AGREPINFO;

The AGREPINFO data structure is used between the various functions of the AGrep family (as opposed
to RGrep family). Most of its fields are for internal use only and should not be modified.

Parameter Description
 iErrorCode See the appendix for possible values and the functions descriptions for meaning and

circumstances of occurrence. In short, CompileAGrep returns a value which is copied
here, AGrep returns a formal value indicating an error whose code must be found in
this field.
Most functions verify that this field is set to AGERR_NO_ERROR before starting
operation.

cPat The original pattern provided to the CompileAGrep function. It is kept here unchanged
and can be used by the user as secondary storage.

TagStart[0] First character of matched string. Only the first value of the table should be used. It is
describing the position of the matched string in the text after call to AGrep. The
additional locations are there for physical compatibility with the RGREPINFO data
structure.

TagEnd[0] First character following end of matched string. Only the first value of the table should
be used. It is describing the position of the matched string in the text after call to AGrep.
The additional locations are there for physical compatibility with the RGREPINFO data
structure.

bMatchCase Internal only. Contains either TRUE or FALSE according to the value of this field in the
call to CompileRGrep.

bMessage In v5.0 and higher, contains either TRUE (normal messages) or FALSE (no messages,
no message box).

uMask Internal only.
uOvMask Internal only.
uLimit Internal only.
blState Internal only.
blOverflow Internal only.
blTemp Internal only.
uTable Internal only.
iBitsPerState Internal only.
iWordSize Internal only. Contains the actual word size of the BLIST structures used elsewhere in

the AGREPINFO data structure.
iType Internal only.
cUPat Internal only. May temporarily contain a copy of cPat with all letters forced to upper

case.
Comments
The fields TagStart and TagEnd can be used in order to sweep from match to match in a single piece of

text (e.g. the whole text of a buffer). After compiling an expression with CompileAGrep, a call to
AGrep(StringStart, pGI) will show the first match at pGI->TagStart[0] (with a length of pGI->TagEnd[0] -
pGI->TagStart[0]). Successive calls to AGrep(pGI->TagEnd[0], pGI) will allow to restart the search
operation from the first character after each string match.

LPAGREPINFO
typedef AGREPINFO FAR* LPAGREPINFO;
The LPAGREPINFO type is defined to provided a portable pointer to the AGREPINFO structure.

RGREPINFO
typedef struct tagRGrepInfo { /* rgi */

int iErrorCode;
char cPat[WORD_SIZE];
LPSTR TagStart[MAXTAG];
LPSTR TagEnd[MAXTAG];
int bMatchCase;
int bMessages;
int iCircf;
char cDFA[MAXDFA];

} RGREPINFO;

The RGREPINFO data structure is used between the various functions of the RGrep family (as opposed
to AGrep family). Some of its fields are for internal use only and should not be modified.

Parameter Description
 iErrorCode See the appendix for possible values and the functions descriptions for meaning and

circumstances of occurrence. In short, CompileRGrep returns a value which is copied
here, RGrep returns a formal value indicating an error whose code must be found in
this field.
Most functions verify that this field is set to AGERR_NO_ERROR before starting
operation.

cPat The original uncompiled pattern provided to the CompileRGrep function. It is kept here
unchanged and can be used by the user as secondary storage.

TagStart[0] First character of matched string. Only the first value of the table should be used. It is
describing the position of the matched string in the text after call to RGrep. The
additional locations are there for physical compatibility with the RGREPINFO data
structure.

TagEnd[0] First character following end of matched string. Only the first value of the table should
be used. It is describing the position of the matched string in the text after call to RGrep.
The additional locations are there for physical compatibility with the RGREPINFO data
structure.

TagStart[n] First character of tagged string. See the description of regular expressions for
substitution in order to have a description (and examples) of use of tags in patterns.

TagEnd[n] First character following end of tagged string. See description of the regular expressions
for substitution in order to have a description (and examples) of use of tags in patterns.

bMatchCase Internal only. Contains either TRUE or FALSE according to the value of this field in the
call to CompileRGrep.

bMessage In v5.0 and higher, contains either TRUE (normal messages) or FALSE (no messages,
no message box).

iCircf Internal only.
cDFA Internal only. This is the internal optimized search automaton.
Comments
The fields TagStart and TagEnd can be used in order to sweep from match to match in a single piece of
text (e.g. the whole text of a buffer). After compiling an expression with CompileRGrep, a call to
RGrep(StringStart, pGI) will show the first match at pGI->TagStart[0] (with a length of pGI->TagEnd[0] -
pGI->TagStart[0]). Successive calls to RGrep(pGI->TagEnd[0], pGI) will allow to restart the search
operation from the first character after each string match.

Please notice that this behavior is similar but not identical to the AGrep family of functions because the
TagStart/TagEnd fields are mainly used (here, in the RGrep family) as storage for sub-expressions rather
than as position of matches.

LPRGREPINFO
typedef RGREPINFO FAR* LPRGREPINFO;
The LPRGREPINFO type is defined to provided a portable pointer to the RGREPINFO structure.

SGREPINFO
typedef struct tagSGrepInfo { /* rgi */

int iErrorCode;
char cPat[WORD_SIZE];
LPSTR TagStart[MAXTAG];
LPSTR TagEnd[MAXTAG];
int bMatchCase;
int bMessages;
char cDFA[MAXDFA];

} SGREPINFO;

The SGREPINFO data structure is used between the various functions of the SGrep family (as opposed
to AGrep family). Some of its fields are for internal use only and should not be modified.

Parameter Description
 iErrorCode See the appendix for possible values and the functions descriptions for meaning and

circumstances of occurrence. In short, CompileSGrep returns a value which is copied
here, SGrep returns a formal value indicating an error whose code must be found in this
field.
Most functions verify that this field is set to AGERR_NO_ERROR before starting
operation.

cPat The original uncompiled pattern provided to the CompileSGrep function. It is kept here
unchanged and can be used by the user as secondary storage.

TagStart[0] First character of matched string. Only the first value of the table should be used. It is
describing the position of the matched string in the text after call to SGrep. The
additional locations are there for physical compatibility with the RGREPINFO data
structure.

TagEnd[0] First character following end of matched string. Only the first value of the table should
be used. It is describing the position of the matched string in the text after call to SGrep.
The additional locations are there for physical compatibility with the RGREPINFO data
structure.

bMatchCase Internal only. Contains either TRUE or FALSE according to the value of this field in the
call to CompileSGrep.

bMessage IContains either TRUE (normal messages) or FALSE (no messages, no message box).
cDFA Internal only. This is the internal optimized search automaton.
Comments
The fields TagStart and TagEnd can be used in order to sweep from match to match in a single piece of
text (e.g. the whole text of a buffer). After compiling an expression with CompileSGrep, a call to
SGrep(StringStart, pGI) will show the first match at pGI->TagStart[0] (with a length of pGI->TagEnd[0] -
pGI->TagStart[0]). Successive calls to SGrep(pGI->TagEnd[0], pGI) will allow to restart the search
operation from the first character after each string match.

LPSGREPINFO
typedef SGREPINFO FAR* LPSGREPINFO;
The LPSGREPINFO type is defined to provided a portable pointer to the SGREPINFO structure.

YGREPINFO
typedef struct tagYGrepInfo {

union {
OPERINFO opI;
AGREPINFO aGI;
RGREPINFO rGI;
SGREPINFO sGI;

} info;
struct tagYGrepInfo FAR* pInfo;
int iTypeOfInfo; /* One of IT_* values */

} YGREPINFO;

typedef YGREPINFO* PYGREPINFO;
typedef YGREPINFO FAR* LPYGREPINFO;

#define IT_NONE -1
#define IT_OP 0
#define IT_AG 1
#define IT_RG 2
#define IT_SG 3

The YGREPINFO union is provided as a way to help the user define a common structure for both types of
searches.
Comments
This union is not currently used by the YGrep Search Engine. However, when a similar union will be
needed, YGREPINFO will be use. Consequently, you can see it as a premium proposed to the users.

LPYGREPINFO
typedef YGREPINFO FAR* LPYGREPINFO;
The LPYGREPINFO type is defined to provided a portable pointer to the YGREPINFO structure.

CompileAGrep
#include <windows.h>
#include <ygrep.h>

int YGCALL CompileAGrep(LPCSTR lpText, UINT k, BOOL bMatchCase, LPAGREPINFO pGI)
int YGCALL SCompileAGrep(LPCSTR lpText, UINT k, BOOL bMatchCase)
LPCSTR lpPattern; /* pattern string to look for */
UINT k; /* number of errors */
BOOL bMatchCase; /* Match case in comparisons? */
LPAGREPINFO pGI; /* pointer to search information block */

The CompileAGrep function processes the pattern in order to prepare approximative search.

Parameter Description
lpPattern Specifies the pattern to look for.

k Specifies the number of errors for approximative match.

bMatchCase Specifies whether the search operation should be case sensitive.

Value Meaning
TRUE Force letter case checking

FALSE Do not check letter casing

bMatchCase Specifies whether the search operation should be case sensitive.

pGI Pointer to an information block as will be used in a later to the AGrep function.

Returns
The returned value is one of the AGERR_* error codes. In case of normal operation (no error), the
returned value is AGERR_NO_ERROR.

Comments
Following are the possible returned values for CompileAGrep:

Value Meaning
AGERR_UNKNOWN_TYPE YGrep Search Engine internal error (no available information on its

origin).
This normally results from semi-automatic checks. This error should be
expected but should trigger a default action like exiting the application.

AGERR_NO_PATTERN A pattern was expected and not found as argument.

AGERR_TOO_LONG AGrep expression is too complex to handle in the internal structures of
the YGrep Search Engine.

AGERR_ALLOC_MEM Not enough memory to build internal structures of the YGrep Search
Engine.

AGERR_STATE Reserved for future use.

Comments
When setting the number of errors to 0, the returned value is always AGERR_NO_ERROR (there can be
no error).

This function must be called at least once before calling AGrep.

The user is advised that trying to search for a short pattern with a large number of errors may be useless
(if more errors are allowed than there are characters in the pattern, the match will be trivial, and trivially
detected in AGrep).

See Also
AGrep

AGrep
#include <windows.h>
#include <ygrep.h>

int YGCALL AGrep(LPCSTR lpText, LPAGREPINFO pGI)
int YGCALL SAGrep(LPCSTR lpText)
LPCSTR lpText; /* text string to explore */
LPAGREPINFO pGI; /* pointer to search information block */

The AGrep function execute the approximative search with the Shift-Or method.

Parameter Description
lpText Specifies the text string to be explored (where to search for the pattern)

pGI Pointer to an information block as built by a previous CompileAGrep call.

Returns
The return value is the number of matches encountered in the explored text string.

If there is no match, the return value is 0.

In case of error, the return value is negative.

When there is one or more matches, the AGREPINFO structure is filled with data describing the
match(es). In particular, the user can use the TagStart[] and TagEnd[] fields.

If there are more than MAXTAG matches, the returned value is MAXTAG. This is caused by the size
limitation of the TagStart[] and TagEnd[] fields. When this situation occurs, you should move to the last
tagged position in order to search again for possibly remaining matches.

Comments
Following are the possible error values for AGrep when the returned value is negative.

Value Meaning
AGERR_ALLOC_MEM Not enough memory to build internal structures of the YGrep Search

Engine.

Even though the structure of the AGREPINFO block is available, the programmer is advised not to try
filling it with information without calling the CompileAGrep function.

If the number of matches is different from 0, it is possible to find the position of the first occurence in the
pGI structure. The first matching character is pointed by pGI->TagStart[0] and the first non-matching
character is pointed by pGI->TagEnd[0].
If the AGREPINFO structure contains an iErrorCode field with an error, the AGrep function will not
execute anything and will return a negative value, leaving the AGREPINFO fields unchanged.

See Also
CompileAGrep

AGrepInit
#include <windows.h>
#include <ygrep.h>

int YGCALL AGrepInit(LPAGREPINFO pGI)
int YGCALL SAGrepInit()
LPAGREPINFO pGI; /* pointer to search information block */

The AGrepInit function should be called before any use of the pGI parameter in any other function of the
AGrep family. It is used to initialize internal data structures in this data structure.

Parameter Description
pGI Pointer to an information block just allocated and not yet used.

Returns
The returned value is either TRUE in case of success, or FALSE in case of failure.

Comments
This function must be called at least once for each of the AGREPINFO structures which will be filled by
the CompileAGrep function.

This function can will accept a pointer to an information block which must have been previously allocated
(possibly with GlobalAlloc() under MS-Windows) and eventually locked in memory (with GlobalLock()
under MS-Windows).

See Also
AGrepEmpty

AGrepEmpty
#include <windows.h>
#include <ygrep.h>

int YGCALL AGrepEmpty(LPAGREPINFO pGI)
int YGCALL SAGrepEmpty()
LPAGREPINFO pGI; /* pointer to search information block */

The AGrepEmpty function is used to clear the contents of the AGREPINFO structure before releasing
memory.

Parameter Description
pGI Pointer to an information block as built by the CompileAGrep function.

Returns
The returned value is either TRUE in case of success, or FALSE in case of failure.

This function must be called at least once for each of the AGREPINFO structures filled by the
CompileAGrep function. If not, when releasing memory for the AGREPINFO block, its contents are not
cleared (mainly pointers in the BLIST fields) and memory leak occurs. The consequence is then a
slowdown of Windows while your application consumes more and more memory, and in the end, out-of-
memory condition for your application or one of its neighbors.

While programming with the YGrep Search Engine, it must be remembered that internal structures for that
Dynamic Link Library are rather large and memory handling is an important part of any MS-Windows
application.

See Also
AGrepInit

AGrepSubsBuild
#include <windows.h>
#include <ygrep.h>

int YGCALL AGrepSubsBuild(LPCSTR lpPattern, LPCSTR lpDest, int iSize, LPAGREPINFO pGI)
int YGCALL SAGrepSubsBuild(LPCSTR lpPattern, LPCSTR lpDest, int iSize)
LPCSTR lpPattern; /* pattern to replace matched strings */
LPCSTR lpDest; /* destination buffer for building substitution string */
int iSize; /* size of the destination buffer */
LPAGREPINFO pGI; /* pointer to search information block */

The AGrepSubsBuild function builds the replacement string for the previous match by AGrep based on
the pattern argument. It does not operate the replacement in the original string (read comments at the end
of this reference page).

To get a full substitution, you should use AGrepSubstitute.

Parameter Description
lpPattern Specifies the replacement string to substitute for the previous match detected by

AGrep.

lpDest Specifies the buffer which will receive the substitution string built from the pattern and
the matched string.

iSize Size of the lpDest buffer.

pGI Pointer to an information block as built by a previous CompileAGrep call and used by a
previous AGrep call.

Returns
The returned value is one of the AGERR_* error codes. In case of normal operation (no error), the
returned value is AGERR_NO_ERROR.

Comments
The pattern uses a specific syntax to describe regular expressions. It is described under the title of YGrep
Search Engine substitution expressions.

Following are the possible returned values for AGrepSubsBuild:

Value Meaning
AGERR_NO_PREVIOUS There was no previous pattern searched, or AGrep was not called

before, or AGrep was called but did not return success.

AGERR_ NO_PATTERN There was no pattern provided for substitution.

AGERR_TOO_SHORT The substitution is building a destination string which is too large for
the lpDest buffer as sized by the iSize argument.

AGERR_STATE Can occur when badly constructed AGREPINFO is forwarded as
parameter to this function. Most usually, it comes from forgetting to call
the previous functions, or from erroneous AGREPINFO structure.

Before calling this function, you must successively use the CompileAGrep (to initialize the pGI
parameter) and AGrep (to perform the search operation preliminary to substituting a string to the match).

After calling AGrepSubsBuild, you are left with a "destination string" which contains the text to insert
back into the original string. The insertion is not done by AGrepSubsBuild, because it could involve a
large amount of memory management that the programmer/user could prefer doing by himself following
the rules he need for his application. If you prefer allowing the YGrep Search Engine doing it by default,
you should look for the AGrepSubstitute function.

For example, CompileAGrep is used on the pattern "horse" (for the sake of simplicity we have choosen
straight text without any error), AGrep is used on the text line "A horse! My kingdom for a horse!". Match
is observed on the third character (beginning of the first "horse" word). Then, for substitution you can call
AGrepSubsBuild with the pattern "large &". It will return an lpDest string containing "large horse" which
you can use to substitute in the original text line (AGrepSubsBuild does not apply the actual
substitution). You can then call again AGrep before substituting again.

The necessity of providing a size limit appears in this example since it is difficult to predict the final size of
the lpDest string (here it grows from the 7 characters pattern - "large &" - to the final 11 characters lpDest
- "large horse"). The user must provide a buffer large enough for building it.

See Also
CompileAGrep, AGrep, AGrepSubstitute

AGrepSubstitute
#include <windows.h>
#include <ygrep.h>

int YGCALL AGrepSubstitute(LPSTR lpText, LPSTR lpPattern, LPCSTR lpDest, int iSize,
LPAGREPINFO pGI)
int YGCALL SAGrepSubstitute(LPSTR lpText, LPSTR lpPattern, LPCSTR lpDest, int iSize)
LPCSTR lpText; /* text previously search with AGrep */
LPCSTR lpPattern; /* pattern to replace matched strings */
LPCSTR lpDest; /* destination buffer for building substitution string */
int iSize; /* size of the destination buffer */
LPAGREPINFO pGI; /* pointer to search information block */

The AGrepSubstitute function substitutes the lpPattern in place of the matched string in the lpText used
in the preceeding and successful search by AGrep.

Parameter Description
lpText Specifies the text string search with the previous call to AGrep. It will be used as the

basis for the substitution of the matched portion detected by AGrep.

lpPattern Specifies the replacement string to substitute for the previous match detected by
AGrep.

lpDest Specifies the buffer which will receive the result of the substitution process.

iSize Size of the lpDest buffer.

pGI Pointer to an information block as built by a previous CompileAGrep call and used by a
previous AGrep call.

Returns
The returned value is one of the AGERR_* error codes. In case of normal operation (no error), the
returned value is AGERR_NO_ERROR.

Comments
The pattern uses a specific syntax to describe regular expressions. It is described under the title of YGrep
Search Engine substitution expressions.

Following are the possible returned values for AGrepSubstitute:

Value Meaning
AGERR_NO_PREVIOUS There was no previous pattern searched, or AGrep was not called

before, or AGrep was called but did not return success.

AGERR_ NO_PATTERN There was no pattern provided for substitution.

AGERR_TOO_SHORT The substitution is building a destination string which is too large for
the lpDest buffer as sized by the iSize argument.

AGERR_STATE Can occur when badly constructed AGREPINFO is forwarded as
parameter to this function. Most usually, it comes from forgetting to call
the previous functions, or from erroneous AGREPINFO structure.

Before calling this function, you must successively use the CompileAGrep (to initialize the pGI
parameter) and AGrep (to perform the search operation preliminary to substituting a string to the match).

For example, CompileAGrep is used on the pattern "horse" (for the sake of simplicity we have choosen
straight text), AGrep is used on the text line "A horse! My kingdom for a horse!". Match is observed on the
third character (beginning of the first "horse" word). Then, for substitution you can call AGrepSubstitute
with the pattern "large &". It will return an lpDest string containing " A large horse! My kingdom for a horse!
".

Notice that only the firstmatch is substituted. It is the reponsibility of the programmer to repeat this
process in order to cover all cases in a specific text. You can then call again AGrep before substituting
again.

The necessity of providing a size limit appears in this example since it is difficult to predict the final size of
the lpDest string (here it grows 6 characters). The user must provide a buffer large enough for building it.

See Also
CompileAGrep, AGrep

CompileRGrep
#include <windows.h>
#include <ygrep.h>

int YGCALL CompileRGrep(LPCSTR lpText, BOOL bMatchCase, LPRGREPINFO pGI)
int YGCALL SCompileRGrep(LPCSTR lpText, BOOL bMatchCase)
LPCSTR lpPattern; /* pattern string to look for */
BOOL bMatchCase; /* Match case in comparisons? */
LPRGREPINFO pGI; /* pointer to search information block */

The CompileRGrep function processes the pattern in order to prepare regular expression search.

Parameter Description
lpPattern Specifies the text string describing the pattern to look for.

bMatchCase Specifies whether the search operation should be case sensitive.

Value Meaning
TRUE Force letter case checking

FALSE Do not check letter casing

bMatchCase Specifies whether the search operation should be case sensitive.

pGI Pointer to an information block as will be used in a later to the RGrep function.

Returns
The returned value is one of the AGERR_* error codes. In case of normal operation (no error), the
returned value is AGERR_NO_ERROR.

Comments
The pattern uses a specific syntax to describe regular expressions. It is described under the title of YGrep
Search Engine Regular Expression.

Following are the possible returned values for CompileRGrep:

Value Meaning
AGERR_ALLOC_MEM Insufficient memory to hold data structures for internal operation.

AGERR_STATE Reserved for future use.

AGERR_NO_PATTERN There was no pattern provided. CompileRGrep tried to use a
previously proposed pattern. But this was the first call to the function.

RGERR_MUNGED_AUTO Munged automaton. Internal error. Should be sign of memory
corruption either by an YGrep Search Engine bug or another
undetected program.

RGERR_MISS_BRACKET Missing closing bracket ']' in expression.

RGERR_EMPTY_CL Empty closure. Do not provide an expression starting with either -, + or
* (closures at the beginning of an expression, or empty closures)

RGERR_ILLEGAL_CL Illegal closure. Some characters are not allowed before a closure:
^$<> cannot be followed by either -, + or *

RGERR_TOO_MANY_PAR Too many parenthesis pairs in the expression.

RGERR_NULL_IN_PAR Null expression inside parenthesis.

RGERR_UNMATCHED Unmatched parenthesis. There is at least one more closing
parenthesis than opening ones.

RGERR_NULL_IN_CRO Null expression inside < >.

RGERR_CYCLICAL_REF A reference is done do itself.

RGERR_UNDETERM_REF A reference is done to an unknown sub-expression.

RGERR_UMATCHED_PAR Unmatched parenthesis. There is at least one less closing parenthesis
than opening ones.

This function must be called at least once before calling RGrep.

See Also
RGrep

RGrep
#include <windows.h>
#include <ygrep.h>

int YGCALL RGrep(LPCSTR lpText, LPRGREPINFO pGI)
int YGCALL SRGrep(LPCSTR lpText)
LPCSTR lpText; /* text string to explore */
LPRGREPINFO pGI; /* pointer to search information block */

The RGrep function execute the automaton-oriented search with regular expressions compatible with the
Unix ed(1) editor.

Parameter Description
lpText Specifies the text string to be explored (where to search for the pattern)

pGI Pointer to an information block as built by a previous CompileRGrep call.

Returns
The return value is the number of matches encountered in the explored text string.

If there is no match, the return value is 0.

In case of error, the return value is negative. The error code can be found in pGI (iErrorCode structure
field).

If the number of matches is different from 0, it is possible to find the position of the first occurence in the
pGI structure. The first matching character is pointed by pGI->TagStart[0] and the first non-matching
character is pointed by pGI->TagEnd[0].
Because there can be no more than one match position stored in the pGI->TagStart[0] field, the returned
value is never superior to 1 (only the first match is found, and additional calls to RGrep must be used to
find the following ones).

Comments
Following are the possible error values for RGrep when the returned value is negative.

Value Meaning
RGERR_MUNGED_AUTO The pGI structure contents have been modified, or never initialized by

CompileRGrep..

Even though the structure of the RGREPINFO block is available, the programmer is advised not to try
filling it with information without calling the CompileRGrep function.

If the RGREPINFO structure contains an iErrorCode field with an error, the RGrep function will not
execute anything and will return a negative value, leaving the RGREPINFO fields unchanged.

See Also
CompileRGrep

RGrepSubsBuild
#include <windows.h>
#include <ygrep.h>

int YGCALL RGrepSubsBuild(LPCSTR lpPattern, LPCSTR lpDest, int iSize, LPRGREPINFO pGI)
int YGCALL SRGrepSubsBuild(LPCSTR lpPattern, LPCSTR lpDest, int iSize)
LPCSTR lpPattern; /* pattern to replace matched strings */
LPCSTR lpDest; /* destination buffer for building substitution string */
int iSize; /* size of the destination buffer */
LPRGREPINFO pGI; /* pointer to search information block */

The RGrepSubsBuild function builds the replacement string for the previous match by RGrep based on
the pattern argument. It does not operate the replacement in the original string (read comments at the end
of this reference page).

Parameter Description
lpPattern Specifies the replacement string to substitute for the previous match detected by

RGrep.

lpDest Specifies the buffer which will receive the substitution string built from the pattern and
the matched string.

iSize Size of the lpDest buffer.

pGI Pointer to an information block as built by a previous CompileRGrep call and used by a
previous RGrep call.

Returns
The returned value is one of the AGERR_* error codes. In case of normal operation (no error), the
returned value is AGERR_NO_ERROR.

Comments
The pattern uses a specific syntax to describe regular expressions. It is described under the title of YGrep
Search Engine substitution expressions.

Following are the possible returned values for RGrepSubsBuild:

Value Meaning
AGERR_NO_PREVIOUS There was no previous pattern searched, or RGrep was not called

before, or RGrep was called but did not return success.

AGERR_ NO_PATTERN There was no pattern provided for substitution.

AGERR_TOO_SHORT The substitution is building a destination string which is too large for
the lpDest buffer as sized by the iSize argument.

AGERR_STATE Can occur when badly constructed RGREPINFO is forwarded as
parameter to this function. Most usually, it comes from forgetting to call
the previous functions, or from erroneous RGREPINFO structure.

Before calling this function, you must successively use the CompileRGrep (to initialize the pGI
parameter) and RGrep (to perform the search operation preliminary to substituting a string to the match).

After calling RGrepSubsBuild, you are left with a "destination string" which contains the text to insert
back into the original string. The insertion is not done by the YGrep Search Engine, because it could
involve a large amount of memory management that the programmer/user could prefer doing by himself
following the rules he need for his application. The YGrep Search Engine could not follow these rules.

For example, CompileRGrep is used on the pattern "horse" (for the sake of simplicity we have choosen
straight text), RGrep is used on the text line "A horse! My kingdom for a horse!". Match is observed on the
third character (beginning of the first "horse" word). Then, for substitution you can call RGrepSubsBuild

with the pattern "large &". It will return an lpDest string containing "large horse" which you can use to
substitute in the original text line (RGrepSubsBuild does not apply the actual substitution). You can
then call again RGrep before substituting again.

The necessity of providing a size limit appears in this example since it is difficult to predict the final size of
the lpDest string (here it grows from the 7 characters pattern - "large &" - to the final 11 characters lpDest
- "large horse"). The user must provide a buffer large enough for building it.

See Also
CompileRGrep, RGrep

RGrepSubstitute
#include <windows.h>
#include <ygrep.h>

int YGCALL RGrepSubstitute(LPSTR lpText, LPSTR lpPattern, LPCSTR lpDest, int iSize,
LPRGREPINFO pGI)
int YGCALL RGrepSubstitute(LPSTR lpText, LPSTR lpPattern, LPCSTR lpDest, int iSize)
LPCSTR lpText; /* text previously search with RGrep */
LPCSTR lpPattern; /* pattern to replace matched strings */
LPCSTR lpDest; /* destination buffer for building substitution string */
int iSize; /* size of the destination buffer */
LPRGREPINFO pGI; /* pointer to search information block */

The RGrepSubstitute function substitutes the lpPattern in place of the matched string in the lpText used
in the preceeding and successful search by RGrep.

Parameter Description
lpText Specifies the text string search with the previous call to RGrep. It will be used as the

basis for the substitution of the matched portion detected by RGrep.

lpPattern Specifies the replacement string to substitute for the previous match detected by
RGrep.

lpDest Specifies the buffer which will receive the result of the substitution process.

iSize Size of the lpDest buffer.

pGI Pointer to an information block as built by a previous CompileRGrep call and used by a
previous RGrep call.

Returns
The returned value is one of the AGERR_* error codes. In case of normal operation (no error), the
returned value is AGERR_NO_ERROR.

Comments
The pattern uses a specific syntax to describe regular expressions. It is described under the title of YGrep
Search Engine substitution expressions.

Following are the possible returned values for RGrepSubstitute:

Value Meaning
AGERR_NO_PREVIOUS There was no previous pattern searched, or RGrep was not called

before, or RGrep was called but did not return success.

AGERR_ NO_PATTERN There was no pattern provided for substitution.

 AGERR_TOO_SHORT The substitution is building a destination string which is too large for
the lpDest buffer as sized by the iSize argument.

AGERR_STATE Can occur when badly constructed RGREPINFO is forwarded as
parameter to this function. Most usually, it comes from forgetting to call
the previous functions, or from erroneous RGREPINFO structure.

Before calling this function, you must successively use the CompileRGrep (to initialize the pGI
parameter) and RGrep (to perform the search operation preliminary to substituting a string to the match).

For example, CompileRGrep is used on the pattern "horse" (for the sake of simplicity we have choosen
straight text), RGrep is used on the text line "A horse! My kingdom for a horse!". Match is observed on the
third character (beginning of the first "horse" word). Then, for substitution you can call RGrepSubstitute
with the pattern "large &". It will return an lpDest string containing " A large horse! My kingdom for a horse!
".

Notice that only the firstmatch is substituted. It is the reponsibility of the programmer to repeat this
process in order to cover all cases in a specific text. You can then call again RGrep before substituting
again.

The necessity of providing a size limit appears in this example since it is difficult to predict the final size of
the lpDest string (here it grows 6 characters). The user must provide a buffer large enough for building it.

See Also
CompileRGrep, RGrep

InitWordCharTable
#include <windows.h>
#include <ygrep.h>

void YGCALL InitWordCharTable()
The InitWordCharTable function initializes the table containing the list of characters considered as word
characters by the RGrep group of functions.

It takes no parameter.

Returns
No return value.

Comments
The initial characters considered as word characters are 0 to 9, A to Z, a to z and the underscore
character(_). This list can be modified using the AddWordChar and RemoveWordChar functions. The
mostly probable use of these modifications are to include accentuated characters for foreign language, or
to remove the underscore characters which is not usually considered a text character out of the
programming languages community.

AddWordChar, RemoveWordChar and InitWordCharTable should never be used while there are
compiled RGREPINFO data structures around. The impact on the following searches using these
RGREPINFO data structures is then unpredictable and depending on the version of the YGrep Search
Engine you are using. After using one of these functions, you should rebuild all RGREPINFO data
structures by calling CompileRGrep again before using them.

See Also
AddWordChar, RemoveWordChar.

AddWordChar
#include <windows.h>
#include <ygrep.h>
void YGCALL AddWordChar(LPCSTR lpChars)
LPCSTR lpChars; /* text string containing the characters to add */

The AddWordChar function adds more characters to the list of word characters for the RGrep group of
functions.

Parameter Description
lpChars Specifies all the characters to be added to the list of word characters

Returns
No return value

Comments
The characters in the parameter string can be in any order and can be in the full range of the extended (8-
bit) ASCII character set (excluding the null character, of course).

AddWordChar, RemoveWordChar and InitWordCharTable should never be used while there are
compiled RGREPINFO data structures around. The impact on the following searches using these
RGREPINFO data structures is then unpredictable and depending on the version of the YGrep Search
Engine you are using. After using one of these functions, you should rebuild all RGREPINFO data
structures by calling CompileRGrep again before using them.

See Also
InitWordCharTable, RemoveWordChar.

RemoveWordChar
#include <windows.h>
#include <ygrep.h>

int YGCALL RemoveWordChar(LPCSTR lpChars)
LPCSTR lpChars; /* text string of characters to remove */

The RemoveWordChar function adds more characters to the list of word characters for the RGrep group
of functions.

Parameter Description
lpChars Specifies all the characters to be removed from the list of word characters

Returns
No return value.

Comments
The characters in the parameter string can be in any order and can be in the full range of the extended (8-
bit) ASCII character set (excluding the null character, of course).

AddWordChar, RemoveWordChar and InitWordCharTable should never be used while there are
compiled RGREPINFO data structures around. The impact on the following searches using these
RGREPINFO data structures is then unpredictable and depending on the version of the YGrep Search
Engine you are using. After using one of these functions, you should rebuild all RGREPINFO data
structures by calling CompileRGrep again before using them.

See Also
InitWordCharTable, AddWordChar

CompileSGrep
#include <windows.h>
#include <ygrep.h>

int YGCALL CompileSGrep(LPCSTR lpText, BOOL bMatchCase, LPSGREPINFO pGI)
int YGCALL SCompileSGrep(LPCSTR lpText, BOOL bMatchCase)
LPCSTR lpPattern; /* pattern string to look for */
BOOL bMatchCase; /* Match case in comparisons? */
LPSGREPINFO pGI; /* pointer to search information block */

The CompileSGrep function processes the pattern in order to prepare soundex search.

Parameter Description
lpPattern Specifies the pattern to look for.

bMatchCase not used.

pGI Pointer to an information block as will be used in a later to the SGrep function.

Returns
The returned value is one of the AGERR_* error codes. In case of normal operation (no error), the
returned value is AGERR_NO_ERROR.

Comments
Following are the possible returned values for CompileSGrep:

Value Meaning
AGERR_UNKNOWN_TYPE YGrep Search Engine internal error (no available information on its

origin).
This normally results from semi-automatic checks. This error should be
expected but should trigger a default action like exiting the application.

AGERR_NO_PATTERN A pattern was expected and not found as argument.

AGERR_ALLOC_MEM Not enough memory to build internal structures of the YGrep Search
Engine.

AGERR_STATE Reserved for future use.

Comments
This function must be called at least once before calling SGrep.

See Also
SGrep

SGrep
#include <windows.h>
#include <ygrep.h>

int YGCALL SGrep(LPCSTR lpText, LPSGREPINFO pGI)
int YGCALL SSGrep(LPCSTR lpText)
LPCSTR lpText; /* text string to explore */
LPSGREPINFO pGI; /* pointer to search information block */

The SGrep function execute searches based upon the soundex method.

Parameter Description
lpText Specifies the text string to be explored (where to search for the pattern)

pGI Pointer to an information block as built by a previous CompileSGrep call.

Returns
The return value is the number of matches encountered in the explored text string.

If there is no match, the return value is 0.

In case of error, the return value is negative.

When there is one or more matches, the SGREPINFO structure is filled with data describing the
match(es). In particular, the user can use the TagStart[] and TagEnd[] fields.

If there are more than MAXTAG matches, the returned value is MAXTAG. This is caused by the size
limitation of the TagStart[] and TagEnd[] fields. When this situation occurs, you should move to the last
tagged position in order to search again for possibly remaining matches.

Comments
Following are the possible error values for SGrep when the returned value is negative.

Value Meaning
AGERR_ALLOC_MEM Not enough memory to build internal structures of the YGrep Search

Engine.

AGERR_NO_PREVIOUS There was no previous pattern searched, or SGrep was not called
before, or SGrep was called but did not return success.

Even though the structure of the SGREPINFO block is available, the programmer is advised not to try
filling it with information without calling the CompileSGrep function.

If the number of matches is different from 0, it is possible to find the position of the first occurence in the
pGI structure. The first matching character is pointed by pGI->TagStart[0] and the first non-matching
character is pointed by pGI->TagEnd[0].
If the SGREPINFO structure contains an iErrorCode field with an error, the SGrep function will not
execute anything and will return a negative value, leaving the SGREPINFO fields unchanged.

See Also
CompileSGrep

SGrepSubsBuild
#include <windows.h>
#include <ygrep.h>

int YGCALL SGrepSubsBuild(LPCSTR lpPattern, LPCSTR lpDest, int iSize, LPSGREPINFO pGI)
int YGCALL SSGrepSubsBuild(LPCSTR lpPattern, LPCSTR lpDest, int iSize)
LPCSTR lpPattern; /* pattern to replace matched strings */
LPCSTR lpDest; /* destination buffer for building substitution string */
int iSize; /* size of the destination buffer */
LPSGREPINFO pGI; /* pointer to search information block */

The SGrepSubsBuild function builds the replacement string for the previous match by SGrep based on
the pattern argument. It does not operate the replacement in the original string (read comments at the end
of this reference page).

To get a full substitution, you should use SGrepSubstitute.

Parameter Description
lpPattern Specifies the replacement string to substitute for the previous match detected by

SGrep.

lpDest Specifies the buffer which will receive the substitution string built from the pattern and
the matched string.

iSize Size of the lpDest buffer.

pGI Pointer to an information block as built by a previous CompileSGrep call and used by a
previous SGrep call.

Returns
The returned value is one of the AGERR_* error codes. In case of normal operation (no error), the
returned value is AGERR_NO_ERROR.

Comments
The pattern uses a specific syntax to describe regular expressions. It is described under the title of YGrep
Search Engine substitution expressions.

Following are the possible returned values for SGrepSubsBuild:

Value Meaning
AGERR_NO_PREVIOUS There was no previous pattern searched, or SGrep was not called

before, or SGrep was called but did not return success.

AGERR_ NO_PATTERN There was no pattern provided for substitution.

AGERR_TOO_SHORT The substitution is building a destination string which is too large for
the lpDest buffer as sized by the iSize argument.

AGERR_STATE Can occur when badly constructed SGREPINFO is forwarded as
parameter to this function. Most usually, it comes from forgetting to call
the previous functions, or from erroneous SGREPINFO structure.

Before calling this function, you must successively use the CompileSGrep (to initialize the pGI
parameter) and SGrep (to perform the search operation preliminary to substituting a string to the match).

After calling SGrepSubsBuild, you are left with a "destination string" which contains the text to insert
back into the original string. The insertion is not done by SGrepSubsBuild, because it could involve a
large amount of memory management that the programmer/user could prefer doing by himself following
the rules he need for his application. If you prefer allowing the YGrep Search Engine doing it by default,
you should look for the SGrepSubstitute function.

For example, CompileSGrep is used on the pattern "horse" (for the sake of simplicity we have choosen
straight text), SGrep is used on the text line "A horse! My kingdom for a horse!". Match is observed on the
third character (beginning of the first "horse" word). Then, for substitution you can call SGrepSubsBuild
with the pattern "large &". It will return an lpDest string containing "large horse" which you can use to
substitute in the original text line (SGrepSubsBuild does not apply the actual substitution). You can then
call again SGrep before substituting again.

The necessity of providing a size limit appears in this example since it is difficult to predict the final size of
the lpDest string (here it grows from the 7 characters pattern - "large &" - to the final 11 characters lpDest
- "large horse"). The user must provide a buffer large enough for building it.

See Also
CompileSGrep, SGrep, SGrepSubstitute

SGrepSubstitute
#include <windows.h>
#include <ygrep.h>

int YGCALL SGrepSubstitute(LPSTR lpText, LPSTR lpPattern, LPCSTR lpDest, int iSize,
LPSGREPINFO pGI)
int YGCALL SSGrepSubstitute(LPSTR lpText, LPSTR lpPattern, LPCSTR lpDest, int iSize)
LPCSTR lpText; /* text previously search with SGrep */
LPCSTR lpPattern; /* pattern to replace matched strings */
LPCSTR lpDest; /* destination buffer for building substitution string */
int iSize; /* size of the destination buffer */
LPSGREPINFO pGI; /* pointer to search information block */

The SGrepSubstitute function substitutes the lpPattern in place of the matched string in the lpText used
in the preceeding and successful search by SGrep.

Parameter Description
lpText Specifies the text string search with the previous call to SGrep. It will be used as the

basis for the substitution of the matched portion detected by SGrep.

lpPattern Specifies the replacement string to substitute for the previous match detected by
SGrep.

lpDest Specifies the buffer which will receive the result of the substitution process.

iSize Size of the lpDest buffer.

pGI Pointer to an information block as built by a previous CompileSGrep call and used by a
previous SGrep call.

Returns
The returned value is one of the AGERR_* error codes. In case of normal operation (no error), the
returned value is AGERR_NO_ERROR.

Comments
The pattern uses a specific syntax to describe regular expressions. It is described under the title of YGrep
Search Engine substitution expressions.

Following are the possible returned values for SGrepSubstitute:

Value Meaning
AGERR_NO_PREVIOUS There was no previous pattern searched, or SGrep was not called

before, or SGrep was called but did not return success.

AGERR_ NO_PATTERN There was no pattern provided for substitution.

AGERR_TOO_SHORT The substitution is building a destination string which is too large for
the lpDest buffer as sized by the iSize argument.

AGERR_STATE Can occur when badly constructed SGREPINFO is forwarded as
parameter to this function. Most usually, it comes from forgetting to call
the previous functions, or from erroneous SGREPINFO structure.

Before calling this function, you must successively use the CompileSGrep (to initialize the pGI
parameter) and SGrep (to perform the search operation preliminary to substituting a string to the match).

For example, CompileSGrep is used on the pattern "horse" (for the sake of simplicity we have choosen
straight text), SGrep is used on the text line "A horse! My kingdom for a horse!". Match is observed on the
third character (beginning of the first "horse" word). Then, for substitution you can call SGrepSubstitute
with the pattern "large &". It will return an lpDest string containing " A large horse! My kingdom for a horse!
".

Notice that only the firstmatch is substituted. It is the reponsibility of the programmer to repeat this
process in order to cover all cases in a specific text. You can then call again SGrep before substituting
again.

The necessity of providing a size limit appears in this example since it is difficult to predict the final size of
the lpDest string (here it grows 6 characters). The user must provide a buffer large enough for building it.

See Also
CompileSGrep, SGrep

YGrepVersion
#include <windows.h>
#include <ygrep.h>

WORD YGrepVersion()
The YGrepVersion function provides the version number of the DLL.

Parameter Description
none

Returns
The return WORD value has the following format (when represented as an hexadecimal value):

Vrrr

Where V is the version number (major) and rrr is the release number (minor). For example, version 1.20d
is coded as 0x1204 and version 4.06 is coded as 0x4060.

This value may be used to determine the capabilities/compatiblity of an already loaded version of the
YGrep Dynamic Link Library and to insure that it is able to answer to specific calls.

Comments
The application may never call this function. But it can be used to check at run time the availability of
certain functions in the Dynamic Link Library.

SCompileAGrep
The SCompileAGrep function is the wrapper with only scalar parameters for the CompileAGrep
function.

It has the same operation but using a single internal (not visible pGI parameter).

SAGrep
The SAGrep function is the wrapper with only scalar parameters for the AGrep function.

It has the same operation but using a single internal (not visible pGI parameter).

SAGrepInit
The SAGrepInit function is the wrapper with only scalar parameters for the AGrepInit function.

It has the same operation but using a single internal (not visible pGI parameter).

SAGrepEmpty
The SAGrepEmpty function is the wrapper with only scalar parameters for the AGrepEmpty function.

It has the same operation but using a single internal (not visible pGI parameter).

SAGrepSubsBuild
The SAGrepSubsBuild function is the wrapper with only scalar parameters for the AGrepSubsBuild
function.

It has the same operation but using a single internal (not visible pGI parameter).

SAGrepSubstitute
The SAGrepSubstitute function is the wrapper with only scalar parameters for the AGrepSubstitute
function.

It has the same operation but using a single internal (not visible pGI parameter).

SCompileRGrep
The SCompileRGrep function is the wrapper with only scalar parameters for the CompileRGrep
function.

It has the same operation but using a single internal (not visible pGI parameter).

SRGrep
The SRGrep function is the wrapper with only scalar parameters for the RGrep function.

It has the same operation but using a single internal (not visible pGI parameter).

SRGrepSubsBuild
The SRGrepSubsBuild function is the wrapper with only scalar parameters for the RGrepSubsBuild
function.

It has the same operation but using a single internal (not visible pGI parameter).

SRGrepSubstitute
The SRGrepSubstitute function is the wrapper with only scalar parameters for the RGrepSubstitute
function.

It has the same operation but using a single internal (not visible pGI parameter).

SCompileSGrep
The SCompileSGrep function is the wrapper with only scalar parameters for the CompileSGrep function.

It has the same operation but using a single internal (not visible pGI parameter).

SSGrep
The SSGrep function is the wrapper with only scalar parameters for the SGrep function.

It has the same operation but using a single internal (not visible pGI parameter).

SSGrepSubsBuild
The SSGrepSubsBuild function is the wrapper with only scalar parameters for the SGrepSubsBuild
function.

It has the same operation but using a single internal (not visible pGI parameter).

SSGrepSubstitute
The SSGrepSubstitute function is the wrapper with only scalar parameters for the SGrepSubstitute
function.

It has the same operation but using a single internal (not visible pGI parameter).

PushYInfo
#include <windows.h>
#include <ygrep.h>

int YGCALL PushYInfo(LPYGREPINFO pGI)
LPYGREPINFO pGI; /* pointer to search information block */

The PushYInfo function allows to push onto the internal stack the search information block or the search
boolean operator for later exploitation by the YGrep function.

Parameter Description
pGI Pointer to an information block already prepared by either CompileAGrep or

CompileRGrep function.

Returns
The returned value is always AGERR_NO_ERROR.

Comments
Before building a list of commands, PushYInfo should always be called with a NULL (0) parameter to
clear the internal data structures. After calling YGrep, it is always needed that the first call to PushYInfo
is this clearing one.

See the description of the YGrep function for an explanation of how the Boolean oriented functions work.

See Also
YGrep

YGrepSetError
See YGrepGetError function.

YGrepResetError
See YGrepGetError function.

YGrepGetError / YGrepResetError / YGrepSetError
#include <windows.h>
#include <ygrep.h>

int YGCALL YGrepGetError()
int YGCALL YGrepResetError(int iError)
int YGCALL YGrepSetError(int iError)
int iError; /* error value to set */

The YGrep function sets its error state in a spearate variable in order to get it clean. The functions
YGrepGetError, YGrepResetError and YGrepSetError are used to manipulate this error code.

YGrepGetError returns the value of the error code.

YGrepResetError sets the value of the error code to iError.

YGrepSetError sets the value of the error code to iError (but only if it was previously set to
AGERR_NO_ERROR). This behavior allows to keep the first error encountered. This is used by the
YGrep function.

Parameter Description
iError Error value to set (for the functions YGrepSetError and YGrepResetError).
Returns
The returned value is always the error value that was present before calling the function.

See Also
YGrep

YGrep
#include <windows.h>
#include <ygrep.h>

int YGCALL YGrep (LPCSTR lpText)
LPCSTR lpText; /* text string to explore */

The YGrep function executes the pushed stack of AGREPINFO and RGREPINFO commandsprepared
by PushYInfo by appropriately calling the AGrep or RGrep functions.

Parameter Description
lpText Specifies the text string to be explored (where to search for the pattern)

Returns
The returned value is the number of matches matches encountered in the explored text string if there is a
single search condition (no operator is used). But if there are several search conditions (in the most
general case), the return value is built according to the table of operators (a few paragraphs later here).

If there is no match, the return value is 0.

In case of error, the return value is negative.

Comments
Before starting execution, YGrep will call YGrepResetError(AGERR_NO_ERROR) in order to reset the
error value. Following are the possible arror values for YGrep when the returned value is negative.

Error value Description
AGERR_ALLOC_
MEM

Not enough memory to build internal structures of the YGrep Search Engine.

AGERR_STATE Field iTypeOfInfo or iOperator was found to contain some value which was not
recognized.

As previously stated, these values can be obtained using a call to YGrepGetError and can be modified
by the functions YGrepSetError and YGrepResetError.
You should be aware that the YGrep function is based upon a recursive descent analysis of the stacked
commands. This has the consequence of limiting the capability of this function to what can be pushed
onto the actual program stack. If you intend to use a complex boolean expression of searches, you should
be prepared to increase stack size for this purpose. Anyway, in most cases, you should not see any
difficulty since every possibility to reduce program stack consumption has been applied and this should
not be a source of inconvenience.

The possible operators are described here:

Value Returned value
OP_NOP Always 0.

OP_NOT The NOT of the matches encountered by the search operation.

OP_UCMP The bit-wise unary complement of the matches encountered by the search operation.

OP_BAND The bit-wise AND of the matches encountered by each of the search operations.

OP_BOR The bit-wise OR of the matches encountered by each of the search operations.

OP_BXOR The bit-wise exclusive-OR of the matches encountered by each of the search
operations.

OP_BNAND The bit-wise NAND (NOT AND) of the matches encountered by each of the search
operations.

OP_BNOR The bit-wise NOR (NOT OR) of the matches encountered by each of the search

operations.

OP_AND The AND of the matches encountered by each of the search operations.

OP_OR The OR of the matches encountered by each of the search operations.

OP_NAND The NAND (NOT AND) of the matches encountered by each of the search operations.

OP_NOR The NOR (NOT OR) of the matches encountered by each of the search operations.

OP_ADD The addition of the matches encountered by each of the search operations.

OP_SUB The subtract of the matches encountered by each of the search operations.

Erroneous
operators

Always returns a negative value.

See Also
PushYInfo

YGrepMessages
#include <windows.h>
#include <ygrep.h>

void YGrepMessages(BOOL bMessagesAllowed)
BOOL bMessagesAllowed; /* are error messages allowed? */

The YGrepMessages function is the entry point to allow/prohibit error and warning messages coming out
of the YGrep Search Engine in any other form than returned values. It provides a way to remove dialog
boxes.

Parameter Description
bMessagesAllowed TRUE means "messages are allowed",

FALSE means "no messages, please".

Returns
None.

Comments
By default, the YGrep Search Engine displays a number of messages through dialog boxes. This function
is a way to remove them. Keeping the default operation of "messages are allowed" is consistent with the
need to keep upward compatibility from previous versions of the YGrep Search Engine (up to v4.x).

When no messages are provided by the YGrep Search Engine, the application must provide its own
based on the returned values of the functions and the error codes in the data structures.

As this function is redundant with the YGrepOptions function, it may disappear in future releases. The
users are advised to avoid using YGrepMessages.

See Also
YGrepOptions

YGrepOptions
#include <windows.h>
#include <ygrep.h>

void YGrepOptions(long lOptions)
long lOptions; /* option flags */

The YGrepOptions function is used to set different behaviour flags that allow to change the standard,
basic, or even historic only behaviour of the YGrep Search Engine.

Parameter Description
lOptions is a long value containing all the option flags

Returns
None.

Comments
All the data structures handled by the YGrep Search Engine should be considered useless (their content
may have loosed any useful signification and may lead to uncommon errors) after calling this function.
Therefore, it should not be used to change any behaviour between e.g. a call to CompileRGrep() and a
call to RGrep() or between two RGrep() calls.

The possible flags to set in the lOptions parameter are described here:

Value Returned value
YO_EOLCR see next comment

YO_EOLLF see next comment

YO_EOLCRLF see next comment

YO_ERRMSG Setting this flag is equivalent to calling the function YGrepMessages() with a TRUE
argument.

The default value in the current version is: YO_ERRMSG. The user is advised to set his/her own value to
avoid risks of future changes in the YGrep Search Engine behaviour.

By default, the YGrep Search Engine regular expression does not expect to find (and recognize) end-of-
line characters in the character stream it is handling. Consequently, ^ and $ (the beginning-of-line and
end-of-line markers are not used at all, and only match the 'beginning-of-lpText' and 'end-of-lpText').

But, depending on the option set with this function, the YGrep Search Engine behaviour can be modified
to recognize as end-of-line the following characters or strings:

Value Returned value
YO_EOLCR character CR or C-character '\r' or ASCII 8 (also known as Carriage Return)

YO_EOLLF character LF or C-character '\n' or ASCII 9 (also known as Line Feed or New Line)

YO_EOLCRLF any combination of CR and LF

The lOptions flags are set as a whole with calls to YGrepOptions like

YGrepOptions(YO_EOLLF|YO_ERRMSG);
where all options are grouped by the '|' operator.

Note that YGrepOptions has no effect on end-of-line handling in the SFileAGrep, SFileRGrep and
SFileSGrep functions.

See Also

YGrepMessages, CompileRGrep, RGrep

SFileOpen
#include <windows.h>
#include <ygrep.h>

BOOL SFileOpen(LPCSTR file)
LPCSTR file; /* name of the file to open */

The SFileOpen function is used to open the file which will be exploited by the other functions of the SFile
series.

Parameter Description
file name of the file to open

Returns
TRUE if the open operation succeeded. FALSE if the operation failed.

Comments
The function makes no difference between all the reasons the open operation may fail.

See Also
SFileClose, SFileAGrep, SFileRGrep, SFileSGrep.

SFileAGrep
#include <windows.h>
#include <ygrep.h>

LPSTR SFileAGrep()
The SFileAGrep function activates the approximative search into the previously opened file (with the
SFileOpen function).

Parameter Description
None

Returns
A line extracted from the searched file, or NULL if the end of the file was reached.

Comments
On the first call, SFileAGrep will return the first line with a match. Each time SFileAGrep is called again,
it will return the next one. When it returns NULL, the end of the file was reached with no match.

Some flags can be set in order to slightly modify the operation of the SFileAGrep, SFileRGrep and
SFileSGrep functions.

See Also
SFileSetFlags, SFileRGrep, SFileSGrep.

SFileRGrep
#include <windows.h>
#include <ygrep.h>

LPSTR SFileRGrep()
The SFileRGrep function activates the regular expression search into the previously opened file (with the
SFileOpen function).

Parameter Description
None

Returns
A line extracted from the searched file, or NULL if the end of the file was reached.

Comments
On the first call, SFileRGrep will return the first line with a match. Each time SFileRGrep is called again,
it will return the next one. When it returns NULL, the end of the file was reached with no match.

Some flags can be set in order to slightly modify the operation of the SFileAGrep, SFileRGrep and
SFileSGrep functions.

See Also
SFileSetFlags, SFileAGrep, SFileSGrep.

SFileSGrep
#include <windows.h>
#include <ygrep.h>

LPSTR SFileSGrep()
The SFileSGrep function activates the approximative search into the previously opened file (with the
SFileOpen function).

Parameter Description
None

Returns
A line extracted from the searched file, or NULL if the end of the file was reached.

Comments
On the first call, SFileAGrep will return the first line with a match. Each time SFileSGrep is called again,
it will return the next one. When it returns NULL, the end of the file was reached with no match.

Some flags can be set in order to slightly modify the operation of the SFileAGrep, SFileRGrep and
SFileSGrep functions.

See Also
SFileSetFlags, SFileAGrep, SFileRGrep, SFileSGrep.

SFileClose
#include <windows.h>
#include <ygrep.h>

long SFileClose()
The SFileClose function is the entry point to allow/prohibit error and warning messages coming out of the
YGrep Search Engine in any other form than returned values. It provides a way to remove dialog boxes.

Parameter Description
none

Returns
The number of encountered lines in the file (with one or more matches).

See Also
SFileOpen.

SFileSetFlags
#include <windows.h>
#include <ygrep.h>

void SFileSetFlags(BOOL bPrintFileName, BOOL bPrintBlockNumber, BOOL bPrintLineNumber, BOOL
bCountsOnly, BOOL bNonMatching)
BOOL bPrintFileName; /* are error messages allowed? */
BOOL bPrintBlockNumber; /* are error messages allowed? */
BOOL bPrintLineNumber; /* are error messages allowed? */
BOOL bCountsOnly; /* are error messages allowed? */
BOOL bNonMatching; /* are error messages allowed? */

The SFileSetFlags function is used to slightly modify the operation of the SFileAGrep and SFileRGrep
functions by allowing specific operation modes.

Parameter Description
bPrintFileName TRUE means "add file name at the beginning of the returned "matching" lines",

FALSE means "no, please".

bPrintBlockNumb
er

TRUE means "add block position in the file for the "matching" line at the beginning of
the returned "matching" lines",
FALSE means "no, please".

bPrintLineNumber TRUE means " add line number in the file for the "matching" line at the beginning of the
returned "matching" lines ",
FALSE means "no, please".

bCountsOnly TRUE means "do not output anything. We'll only collect the count of "matching" line
when closing the file",
FALSE means "give me all lines, please".

bNonMatching TRUE means "output non-matching lines rather than those matching",
FALSE means "normal operation, please".

Returns
None.

Comments
By default, all parameters are set to FALSE when the DLL is loaded; And they are never reset by any
mean other than calling this function. So, the user should always use it since it will not cost much
performance.

See Also
SFileAGrep, SFileRGrep, SFileSGrep.

Other packages of the Engine Series

The current package is part of a series of so-called Engines for power programmers and power users.
They can be found in all good shareware libraries (Well! At least, they look good to me if they have my
packages...).

The Engine Series include the following programmers tools:

YGrep Search Engine

BitList Engine

and an application:

ClusterView

The Engine Series and their documentation files and manuals are copyrighted (C) 1993-94-95-96 by Yves
Roumazeilles.

ClusterView Application

The ClusterView application is an MS-Windows file viewer able to handle multiple files grouped in a
structure named a cluster. It is an efficient way to look at groups of files which are too large to be stored
in main memory.

The main advantages of this application are:

file viewer for files larger than the memory size AND the swap file size.

file viewer for file groups (named clusters).

search capabilities including approximative search (or search for a pattern with a number of errors)
and regular expression search (compatible with Unix GREP search).

This application is a must when you handle large files under MS-Windows and cannot afford large
amounts of memory and/or large swap files and/or the performance penalty imposed by most other file
viewers.

The ClusterView application uses and demonstrates the capabilities of the AGrep Search Engine in a
real-life context.

YGrep Search Engine

The YGrep Search Engine is a text search Dynamic Link Library (DLL) to be used with any kind of MS-
Windows application. It has two possibilities:

approximative search based on Baeza-Yates algorithm to find a pattern which is only partly known
(also known as search with erroneous patterns). For example, you can search for "pattern" with 1
error (at most) and it will match "pattern", "pittern" and "Pattern" while stepping over "lantern" (2
errors).

search modeled on the Unix utility named GREP. It is particularly useful for complex searching with
the help of its specific search "language" to describe the pattern you look for. For example, you can
search for "^pattern" to look for "pattern" at the beginning of a line; or for "[pl]a[nt]tern" to look for
either "pattern" or "lantern". An extensive description of the language can be found on any Unix
system, or in the help file accompanying the YGrep Search Engine shareware edition on your
preferred BBS or Internet site.

Both are particularly useful to improve greatly the search capability of an existing tool such as a text
editor, a data base search engine, etc.

Additional functionality allow to apply substitution after pattern recognition by the search functions.

BitList Engine

The BitList Engine is a DLL designed to handle lists of bits (and to a small extent, big numbers). It was
built because of the limitations of the ANSI-C bit fields which cannot be larger than an "unsigned long".

The BitList Engine allows you to build very large bit lists and to handle them with a set of functions
covering a large range of needs (this is continuously expanding):

constructors/copy-constructors/copy operators

logical operators (AND, OR, NOT, etc.)

arithmetic operations (ADD, SUB, etc.)

shift operations (left and right)

others...

This will be particularly useful to handle large sets (as belong to the programmer's bag of tools) and to
work on encryption/compression code.

Author Address
Registration fees can be sent to, and the author can be reached at the following address (Email and duly
paid registration fee is the preferred interface if you want a prompt answer):

Yves Roumazeilles
63 rue des Moines
75017 PARIS (FRANCE)
Phone: +33 1-42.28.74.51
Fax: +33 1-30.38.37.07
CIS: 101233,1032
Email: 10233.1032@compuserve.com

You can also reach our web page at:

http://ourworld.compuserve.com/homepages/Yves_Roumazeilles

For comments, suggestions and bug reports, Email is also available at:

Yves_Roumazeilles@compuserve.com
Yves.Roumazeilles@sagem.fr
Roumazeilles@sagem.fr

What is Shareware?
"Shareware" is a way to distribute software while retaining the best of all worlds. People are invited to
freely make copies of the software for evaluation purposes (it's cheap distribution). You are both legally
and morally obliged to pay the registration fee if you start using the software after an initial 30 day
evaluation period (the author gets money from its work). This respects the rights of the author while
avoiding burdening the users with high costs of traditional distribution channels.

Shareware is not free, Shareware is not public domain, but Shareware is not expensive (I actually cannot
live from it...)

Remember! The fee is small because the distribution is simple, but the user (YOU) must honestly pay the
registration fee. This will allow future releases to hit the market soon with many enhancements.

